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SUMMARY 

An analysis is made of the generation of surface waves by the time-periodic oscillations of smooth submerged 
cylinders in the limit when the cylinder is at a large depth h below the free surface, and the frequency to/(2~r) 
of the oscillations is high. Specifically, the parameters of the problem are such that to=d= [g ~, 1 and h/d~ ~ 1 
subject to the condition that w2d~d2/(gh) g 1 where g is the acceleration due to gravity and d I and d 2 
denote the maximum and minimum diameters of the body wave maker. The amplitude of the radiated waves 
ff found to be exponentially small and to relate to certain critical points inside the cylinder. 

l .  Introduction and formulation 

A submerged smooth cylinder has its axis horizontal and parallel to the free surface of a body 

of deep water and is making oscillations, of  small amplitude and high frequency, in a direction 

making an angle 0~ with the free surface (Fig. 1). In the two-dimensional case, let the smooth 
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Figure 1. Cross-section of the oscillating cylinder. 
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cross-section of the cylinder be given by C(x, y) and choose Cartesian coordinates (x ,y)  with 
origin at some convenient point inside C(x,y),y pointing vertically downwards and x measured 
horizontally to the left. The free surface is at y = -- h with h >> dl ,  where dl is the maximum 

cylinder diameter. It is assumed that the fluid is inviscid and incompressible and that the 
motion is irrotational. For small time-periodic oscillations of the cylinder, the velocity potential 

is given by ~ (x, y, t) = Re {~(x, y)e-it°t}; o~/(27r) is the frequency of the oscillations. With the 
time factor suppressed, q~(x, y)  is specified by the following conditions: 

ax 2 ay---- ~- = 0 in y > --h,  outside C, (1.1) 

~ + e : , - -  = 0 on y = - h ,  (1.2) 
oy 

where 27re = 21rg/co 2 is the wavelength of the radiated waves and g is the acceleration due to 

gravity. It is assumed that e "< d2 and eh/(dld2)>> 1, where d2 is the minimum cylinder dia- 
meter. Also 

- -  = n . k  on C, (1.3) 
On 

where n is the unit outward normal to C and k = (cos 01, sin 01, 0) is the direction along 
which the wave maker is oscillating (Fig. 1). If the cylinder is oscillating with a constant velo- 
city other than unity, then the linearity of the problem always,permits its scaling out. The 
behaviour of $(x,y) at infinity is required to be that of outgoing waves only. Thus 

as x ~  +oo, (1.4) 

as x ~ - - o o .  (1.5) 

The constants A and B are unknowns of the problem and our aim is to estimate them when 
the body C is at a large distance below the free surface and the wavelength is small such that 
eh/(dld2)>> 1. The next section deals with the case when C(x, y) is a circle of unit radius, 
and the estimates obtained for A and B are thought to be valid in the limit when e is very 

small, and h is very large compared with unity such that eh >> 1. 
In the third section we consider the case when C is an ellipse of arbitrary orientation. An 

estimate for B is obtained by utilising the approximations to the scattering potential obtained 
by Leppington [ 1 ]. The exponential behaviour of this estimate is found to relate to the focus 
nearest to the free surface. 

An estimate for A can be arrived at along the same lines by simply reversing the direction 

of the incident wave in the scattering problem dealt with by Leppington [1] and using the 
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corresponding approximations to the ensuing potential. Some corresponding remits for arbi- 
trary smooth cylinders are conjectured in the final section. 

2. Radiation from a circular cylinder 

If the cross-section of the oscillating cylinder is the unit circle x 2 +y2  = 1 = Izl 2 , z : x + iy, 

then the radiation potential ~(x, y)  is specified by conditions (I.1)-(1.5) with condition 
(1.3) taking the form 

0, co ,0 0 ,  ,lzeO+  I o n e  
ar 

where z = e/8 on C and ~[ar indicates differentiation along the radius of the unit circle C. 
When e is very small and h is very large, it is plausible to suppose that a good approximation 

to ~(x, y)  is obtained by simply ignoring the free-surface condition (1.2) and solving for the 
potential ~o(X, y)  that vanishes at infmity, is harmonic in Izl > 1, and satisfies condition 
(2.1) above. The potential ~o(x,y) is found with the aid of the Green's function 

I zll Iz - z o  I - z-o 
1 log (2.2) H(x,y;xo,Yo) = 2-~- Izl ' 

where z o is the complex conjugate of Zo and Izo 12 = xo 2 + y ]  > 1. In addition to being har- 
monic in Izl > 1 except for a source singularity at Zo, the function H(x, y; xo,Yo)has the 
property that: 

} -~r = 0 on Izl = 1. (2.3) 

H _  1 { ( z )  ( 1 ) }  -  log Izol I - N  

The application of Green's identity to ~o(X,y) and H(x, y;xo,Yo)in the domain Izl > 1, and 
the use of simple residue calculus yield the solution: 

~o(x,y)  = _ Re [~____.} = -  (x c o s 0 1 [ , , / 8 , ~  + y  sin 01) (2.4) 
x 2 + y2 \ z !  

This is not an exact solution of the problem posed originally since it fails to satisfy the free- 
surface condition (1.2). Following the procedure used by Leppington [1] in dealing with the 
problem, we define a harmonic correction potential ~pc(x, y)= ~(x, y)--~o(x, y). Since 
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Since ~0 is a wave-free potential, ~e(x, y) satisfies conditions (1.4) and (1.5) together with 
the specifications: 

= 0 on Izl = 1, (2.5) 
ar 

+ e -ay  = q(x)  on y = - - h ,  (2 .6)  

where 

q(x) = xcosOl "hsinOa a (xsinOl +hcosOx_) 
x2 + h2 -- e ~x x2 + h2 . (2.7) 

Clearly, ~e(x, y) corresponds to the potential generated by a surface pressure distribution, 
proportional to q(x), in the presence of a fixed circular cylinder. In the limit e ~ 0, h -~ ~, 
the right hand side of (2.7) indicates that q(x) is very small. Thus it is anticipated that ~o(x,y) 
will be good approximation to (b(x,y) in this limit. 

An exact solution for ~e(x, y) does not seem feasible. Instead it is supposed that, when h 
is very large, a potential which ignores the presence of the cylinder will be good approximation 
for ¢c, since the cylinder will appear to be a great distance away from the free surface. Abiding 
by this scheme, we write 

 c(x,y) = + (2.8) 

where the harmonic function ~1 (x, y) satisfies the radiation condition at infinity, of outgoing 
waves only, together with (2.6), and ignores condition (2.5), which has to be accounted for by 
~2 (x,y). An exact solution for ~l(x,  y) follows from the known Green's function 

l { (x--xx)2 + (Y--Y~) 2 } 
G(x,y;xl,yi;e) = ~ l o g  (x_xx) 2+(y+yl +2h)  2 

1 fp e-~ (y+yt+2h) 
cos ( x - - x i )  dt = Go+G1 say. 

7r t - - 1  (2.9) 

The integration path V runs from 0 to ~,  indented below the singularity at t = 1. The function 

G(x; xl ; e) is the potential due to a line source at (xl,  y~ ) with no obstacles present. 
The application of Green's identity, to ~1 and G, in the regiony > --h yields: 

1 f?G(x,--h;xl,yl)q(x)dx, ~l(xl,Yl) = e (2.10) 
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where q(x) is given by (2.7). 
In the integral (2.10), G = G1 since the logarithmic term Go vanishes ony  = - h .  To evalu- 

ate }1 (xl , y , )  we use the form 

1 e - t (h+y l )  
• it 

_ _  {e~{X-x,) + e~-~=~-~)}dt (2.11) 

in (2.10). On interchanging the order of integration and performing the x-integral by a simple 
calculation of residues, it is found that: 

i -i°' , t - - l ]  { t } ~ , (x ,y)  = - - e  | exp -- (2h--iz) dt 
2e 

2e kt ----~] exp - - e  (2.12) 

where the point (xl,  Yl ) is replaced by (x, y) with z = x + iy. If x = Rez/> 0 then, in (2.12), 
P is deformed onto the positive imaginary axis in the first integral and onto the negative ima- 
ginary axis in the second integral yielding: 

exp -- - -  (2h -- iz) dr 
1 . ~ 6 

e + 4iTre -~(2h-~z) + 2 J ~, (x ,y)  = 2e ]2h-iz 
L 

[ e  io~ 6 • ~ 

+ 2  t - , Rez >t 0. (2.13) 
o T - - I  

Interchanging the deformations of P carried out in the case o fx />  0, we arrive at: 

ie-i°' [ 6 
d (x,y) = 26 [2h-iz 

[ 
ie~°~ [ 6 1 . 

-+4ine-~(=h+iz)+ 2 J ~  
26 [ 2h + iz 

/ 1] exp -- tr(2h + /z )  dr 
e 

r + i  

Rez ~< 0. (2.14) 

It is now clear from (2.13) and (2.14) that 
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~I(x,Y) 2rr e-/°l -~ .  eiX- e~ as x ~ +  °° 
e 

_2_.hh _ i _ x  Y ~l(x,y) ~ 2rrei°l e .e e-~, 
e 

a s  x ---> - ° °  . 

(2.15) 

Since, for very large h, ~I(X, y) is regarded as a good approximation to ~c (x,y) and since the 
latter has the specifications (1.4) and (1.5) at infinity, then it is concluded that 

21r e_/O 1 2h A . . . .  - -~ for large h, (2.16) 
e 

and 

B 2he+iO ' 2h (2.17) --~ for large h. 
e 

The problem for ~2(x, Y) 

In addition to the free-surface condition (1.2) and the condition 

a~____~2 _ a~l on Izl = 1, (2.18) 
an an 

the harmonic potential ~2 (x, y),  of (2.8), has the radiation condition of outgoing waves only 
at infinity. The problem for ¢2 (x, y)  resembles the original one posed for ~(x, y). The only 
difference between them is, of course, that the mode of oscillations of the circular cylinder 
is changed. In what follows., an attempt is made to show that, in the limit e ~ 0, h ~ oo, the 
oscillation in (2.18) is smaller in absolute value than the original oscillation in (2.1). Differen- 

tiating (2.12) under the integral sign yields: 

10~1t ze-~ Jr  t(t---~-+ l)exp { - - t  (2h--iz)} 1 e 

zei°' i" t(t + t (2h + iz) dt, 
2e 2 dr t - ~ ) e x p  --~- 

(2.19) 

where zz = 1 on C. 
Deforming the contour F in a fashion similar to that which gave rise to the results (2.13) and 

(2.14) and integrating by parts we arrive at the result: 



(~n~) I~,:~ [(2hi ze-~_iz)2J-I+ Ii ze-'°l I Re 4e Re (2--~]z)3 ~ as e ~ 0 .  (2.20) 

In the limit e ~ 0, the dominant term in (2.20) will be the first one, and this in turn is small 
when h is very large. In fact 

\~--n] Iz l= l  ~ 4h2C°s(O--01) as e-~0,  h ~ ,  (2.21) 

where z = e/e on C. 

From (2.18) we have 

¢)~2 l 
~r/ 4 h  2 cos(0 -- 01 ) as e -+ 0, h -~ ~ on C. (2.22) 

Therefore, in the case of very high-frequency oscillations and when the centre of the cylinder 

is a large distance below the free surface, the oscillations in the problem for ~2 is much smaller 
in absolute value than that in the original problem for ¢(x, y)  {see (2.1)}. This leads to the 
belief that (2.16) and (2.17) are the leading terms in the expansions for A and B in the limit 
e-~ 0, h--} o,, such that 1/(eh)'--} O. This is because the waves produced in the 'secondary' 
problem for ~2(x, y)  will have much smaller amplitude in this limit. However, this argument 
is not rigorous since it appears to be heuristic in justifying that the neglected terms in the 
oscillations (2.22) make contributions, to A and B, asymptotically smaller than those in (2.16) 
and (2.17) in the limit under consideration. It may be appropriate here to point out that the 
difference between the swaying (01 = 0) and heaving (01 = 7r/2) cases is only a phase shift 
in the estimates for A and B. This is consistent with the results due to Ogilvie [2]. We conclude 
this section by pointing out that in the special case 01 = rr/2 (heaving) an approximation to the 
potential ~(x, y)  was found by, formally, setting e = 0 in condition (1.2) and using the con- 
formal transformation 

az + ia 2 
~"-  a = h - - ( h 2 - - 1 )  1/2 < 1 

az +i 

to obtain a solution. By substituting this approximation in the formula obtained by applying 
Green's identity, in the fluid region, to the potential ~(x, y)  and the fundamental solution 
(2.9) due to a line source at (xl ,  Yl), the same estimates obtained in (2.16) and (2.17) were 
arrived at (see Appendix). 

3. Oscillations of an elliptic cylinder 

In this section we investigate the case when the cross-section C(x, y) of the wave maker is an 
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ellipse inclined at an angle 0o to, and oscillating in a direction making an angle 01 with, the free 

surface y = - h (Fig. 2). 

FREE SURFACE 

~ y = - h  

RADIATED WAVES RADIATED WAVES 

C (x,y) 

V = k Re(e -it°t) 

Figure 2. Oscillating elliptic cylinder. 

Referred to the (x, y)-system of coordinates, the equation of the ellipse assumes the form: 

( o )  + y c o s O o - - x s i n O  2 = 1 

a b ' 
(3.1) 

with a > b. 
The fluid motion, induced by the harmonic oscillations of the ellipse, has the velocity 

potential ¢ ( x , y )  with the specifications (1.1)-(1.5) with (1.3), in this case, taking the form: 

_a~ = #0x + Xoy 
on C, (3.2) an (a 2 + b ~ _ x  2 _y2 )1 /2  

where 

b a 
= -- cos 0o cos(01 - - 0 o ) - ~ -  sin 0o sin(01 --0o), /2° a 

b a~ 
Xo = --sin Oo cos(Ol --0o) + ~- cos Oo sin(01 --0o). 

a 

(3.3) 

Our aim is to arrive at an estimate for the amplitude B of (1.5) in the short-wave limit (e ~ b) 
and when the centre of the ellipse is a large distance from the free surface (h >> a). Towards the 
realisation of this, we make use of the approximations to the potential obtained by Leppington 
[ 1 ] when dealing with the corresponding scattering problem. This deals with the determination 
of the potential ~(x, y) induced in the fluid by a plane wave exp {(/x - y ) / e }  incident from 
negative infinity in the presence of the same elliptic cylinder, which is now fixed. The potential 



• ( x ,y )  is specified by: 

2 aa_~_~) 
~ - ~ +  • = 0 in y > - h ,  outsideC, 

0q~ 
- -  = 0 o n  C ,  
an 

a ~  
, I ~ + e a y  = 0 on y - h ,  

/ x - y  
Te e as x ~ +  °° 

- / x  - y  
e + Re e as x -~ ~ 
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(3.4) 

T and R are the transmission and reflection coefficients respectively. Green's theorem, applied 

to the radiation potential qS(x, y )  and 4,(x, y )  of  (3.4) in the fluid region, gives rise to the 

formula: 

iBe-g = ~ n n d S  = (a 2 + b  2 - - x  2 _y2)V2jqb  ds (3.5) 

where (3.2) is used and 's' denotes arc length. An exact solution to (3.4) does not seem to have 

been arrived at as yet, which means that B cannot be determined exactly. Therefore an estimate 

for B, which is thought to be valid in the limit h/a >> 1, b/e >> 1 such that ab/(eh) "< 1, is sought 

instead. 

Following Leppington [1 ] we write 

/__z 
= e c + ¢ ,  (3.6) 

where z = x + iy and ¢ is the scattered potential. Hence 

iz  

2h ~C (laoX + Xoy)e-g ds ~c Oaox + Xoy)ep 
i B e T  = (a2 + b 2 _ x  2 _y2 ) t / 2  + (a a + b 2 _ x  2 _ y 2 ) l / a  (3.7) 

The first integral in (3.7) can now be found using the conformal transformation 

z = e i°o ~ + for < i~'1 < 0% (3.8) 

where a = ½ {a + b },/3 = ½ (a - b). 

The ellipse C is then mapped onto the unit circle [~'1 = 1. Hence 
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~c (poX + ~oy)e-g ds 
(a 2 + b 2 _ x  2 _y2)1/2 

= - - i  ~g.,=l {~1 +/ax/~-~j exp (ie~ 0--° 

where/al = ½ {b c os(0x - 0 o )  + /a  sin(01 -0o)}.  
But 

- Q .  

where 

Pn = in Jn e'O° , 

Qn = in "In e~O° 

and Jn(z) is the Bessel function of order n. Therefore 

- 

(/aoX + Xoy)e ,z/e ds 
(a 2 + b 2 _ x  2 _y2)V2 = 27r(#lPl + ~Q1) .  

in < I~'1 < 0% (3.10) 

(3.11) 

(3.12) 

The scattered potential ¢(x, y)  in the second integral of (3.7) is not known exactly on the 
ellipse C. However, in the short-wave limit (e "¢ b) and when h >>a, an approximation ¢o(x,y) 
to ¢(x, y)  can be found in Leppington [1]. Briefly, the potential ¢o is harmonic in the whole 
domain exterior to the ellipse C, vanishes at infinity and satisfies the condition 

a¢o_ (e u/e) on C. (3.13) 
an an 

The conformal transformation (3.8) and the Green's function (2.2), with z and zo replaced 
by ~" and ~'o respectively, lead to the image function ¢~. Thus 

¢~ = ~  Pn ~ ~ in 1 ~< I~'1, (3.14) 
.1 i f ) "  --1 

where Pn and Qn are as in (3.11). In particular 

on I~'1 = 1. (3.15)  



The second integral in (3.7) can now be found in the limit under consideration. Thus 
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~c (/aoX + Xoy)¢ ~c (a 2 + b 2 _ x  2 _ y ) l / 2  ds 
(btoX + XoY)¢o 

(a2 + b 2 _ x  2 _y2)1/2 ds 

I=1 ' ~ - ]  ¢~ d~" = 2rr(/.t,P, - ~ 1 Q 1 )  

e h 
as - - ~ 0 ,  - - ~ o o  (3.16) 

b a 

Results (3.12) and (3.16) give the estimate: 

B ~ 2rr { b c o s ( 0 1 - - O o ) + / a s i n ( 0 1  
c 

e h 
as -- ~ 0, -- -+oo. (3.17) 

b a 

It can be seen that (2.17) can be recovered from (3.17) by putting a = b = 1 (i.e. a = 1,13 = 0). 

This leads to the belief that (3.17) is valid in the limit h/a >> 1, b/e >> 1 such that eh/(ab) >> 1. 
Since all orientations of  the ellipse can then be accounted for, 00 will be taken such that 

0 ~< 00 < 7r. In this range, the asymptotics o f  the Bessel function give: 

OS0o) / 
e h ab 
-- -- ~ oo such that ~ 0, (3.18) as b -->0' a eh 

where d = 2(a~3) 1/2 is the semi-focal distance. 

It is seen from (3.18) that the exponential behaviour of  the estimate for B depends crucially 

on the vertical depth (h - - d  sin 0o) of  the focus nearest to the free surface. It may also be of  

some importance to note that this exponential behaviour does not depend on the angle of  

oscillation 01 which affects the multiplying factor only. In the case 80 = 0, the major axis 

is horizontal and the two foci are equidistant from the free surface in which case the semi-focal 
distance d has a phase effect only. 

We end this section by pointing out that a corresponding estimate for A of  (1.4) can be 
obtained in the same manner by simply reversing the direction of  the incident wave in problem 

(3.4) and using the corresponding approximations to the resulting scattered potential. 
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4. Generalisations 

In this final section, it is our objective to generalise the method, outlined in Sec. 3, to oscillating 
cylinders of arbitrary smooth (continuously differentiable) and simple (no multiple points) 
cross-sections. To this end we start by considering the mapping: 

z = a o ~ +  T. ak kffi, ~ for 0 < p < I~'1 < ~ (n i> 1), (4.1) 

where ao, a l ,  a2 . . . .  , a  n are, in general, complex constants and p is the modulus of the 
singularity {root of dz[d~ = 0} farthest from ~" = 0. If we suppose that, under the map (4.1), 
the region exterior to C(x, y) is transformed conformally onto the outside of C* (1~'1 = 1 } with 

C ~ C*, then p < 1. This is because the closed curve C is, by hypothesis, simple and smooth and 
that no singularities can be allowed in the region outside C. The algebraic equation dz/d~" = 0 
will, then, have roots on or within the closed disc I~'1 ~< p {Fig. 3 } and the mapping (4.1) will, in 

fact, be conformal in the annulus p < Ig'l < ~. It is our intention, in what remains of this 
section, to keep to this branch of the mapping (4.1) bearing in mind that the images, of those 
singularities lying on I~'1 = p, will be in the interior of C(x,y) in the z-plane. 

~3 • •  c'051:1  

Figure 3. Critical points of the mapping. 

The equation of the cross-section C(x, y), of Fig. 1, can now be written down in the parametric 
form: 

tl 

z = aoe i~ + ~ ake -ik~, (4.2) 
k = l  

where ~" = e ~° on C*. 

The condition on the body C, as given in (1.3), takes the form: 



Re{ ie' } 
an 
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on C, (4.3) 

where Oa 

where 

= ½(~oe ~, - c q e  -i°, ), 

is the angle of oscillation and s is the arc length. Using (4.2) and (4.3) we obtain: 

~ +_~ _ ~ ~} d ~  
f ~-  ~" on C*, (4.4) 

k = 2  

~k = ½ kak  e - i ° ' .  

In order to arrive at an estimate for B of (1.5) we make use of the potential of problem (3.4) 
and Green's identity. Hence 

/Be~/e = * ~nn ds. (4.5) 

Proceeding as in Sec. 3, we approximate ~(x,  y)  by {e ~z/e + ¢o } with ~o(X, y)  having similar 
specifications as those outlined in that section when dealing with the elliptic cylinder case 
(Leppington [ 1 ] ). Thus 

~c e h iBe 2hIe ~ { eiz/e + ¢0 } ~n ~ ds for d--2- "~ 1, ~ >> 1, 

where dl and d2 are the maximum and minimum diameters of C(x ,  y )  respectively. 
Using the transformation (4.1) and formula (4.4), the integral can now be performed in the 

~'-plane; 

k=, e Z ~  1. 

" L 
k = 2  

(4.7) 

The exponential function can always be expanded in a Laurent series about ~" = 0 valid in 
the region of analyticity of (4.1). Thus we let: 

• . .  fn] )  ,n=o =1 ~ for p < I~'l < ~,  (4.8) 
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where p is as in (4.1). The coefficients R m and Trn are given by: 

dL 

1 ( ~  ~.ra-i exp 0~" + + 
Tra = 2i7r Jr  . . .  d~. 

(4.9) 

P is any circle with centre at ~ = 0 and radius greater than p. The function ~ can now be 

determined in the same way outlined prior to (3.14). Thus 

~ = ~ Rra ~ ~-~ for 1~'1 /> 1. (4.10) 

Therefore 

Be 2hIe ~ -- Ro + 2 ~ _  vk~k_ 1 + v _ vk d~ 
i= 1 k=2 ~ '  k=2 

{ o } h 
=4i I r  --vRl + ~ vkRk for d2 >> 1, - -  >> 1. (4.11) 

k =2 e dl 

It is thought that, in order for (4.11) to be the leading term, the ratio dld2/(eh) should be 

small in the above limit. Result (3.17) can easily be recovered from (4:11) by letting ao = ae i°° , 
al  = ~ / ° °  (a >/3 > 0) and a k = 0(k />  2). 

In the limit d2/e >> 1, the largest contribution to the asymptotic behaviour of  R k (k = 1, 

2 . . . .  , n) comes from the roots of  dz/d~" = 0 (i.e. the singularities of  the mapping (4.1)) as 

can be seen from the first of  the integrals (4.9) (Copson [3] ). In fact the only singularities 

which contribute to R k are these which lie on the boundary of  the region of analyticity of  the 

branch function used in the mapping (i.e. on i~'l -- p, see Fig. 3). The images of  these singu- 

larities are inside C(x, y)  in the z-plane. It is suggested here that the dominant contribution to 

R k will be due to that singularity with an image nearest to the free surface in the z-plane. 

Conclusion 

In the short-wave limit (e/d2 ~ 1) and when the oscillating cylinder C(x, y)  is at a large depth 
below the free surface ( d l / h ~  I) such that dld2/ (eh)~  1, the cases considered in the pre- 
ceding sections seem to indicate that the exponentially small amplitude always relate to that 
singularity of  the mapping which lies inside C and on the boundary of  the region of analyticity 
of  the branch function used to t ramform the exterior of  C onto the outside of  the unit circle, 
and which has the smallest imaginary part (i.e. lying closest to the free surface). Singularities 
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which lie at an equal depth below the free surface make equally important contributions to the 

asymptotic behaviour of the amplitude and their sum is taken in such a case. The method 

outlined in Sections 3 and 4 can be used to investigate the case when the points of C ( x , y )  are 
oscillating with different velocities, i.e. 

V = Re{v(x ,y )e - i~° t } .  
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Appendix: An alternative m e t h o d  f o r  a heaving c i r c u l a r  c y l i n d e r :  

When 01 = n/2 in condition (2.1) and e is put equal to zero in the free-surface condition 

(1.2), an approximation ¢0(x, y)  to the radiation potential ~(x, y)  which is expected to be 

reasonable in the short-wave limit is formulated as follows: 

02¢o_~ 02¢0 
- 0 in y > - -h ,  outside Izl = 1, 

0x: 0y ~ 

¢0 = 0 on z = x - i h ,  (A.1) 

000 i ( 1 )  
- - z  o n  Izl  = 1 

On 2 

¢0-~0  as Iz l~  °°. 

In order to obtain the solution to (A. 1), the conformal mapping 

~" = Rei~ _ a z + i a  2 a = h - - ( h  2 - 1 )  1/2 < 1 (A.2) 
a z + i  ' 

is used to deal with the image function ¢~ in the ~'-plane. Bearing in mind that 

{ 0o t 
0n ~lz[=l ~ ~0R - -  } 

the problem for ¢~ becomes: 
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V2¢~ = 0 in a < Ig'l < 1, 

¢] = 0 on I£'1 = 1, 

O~)~ (1 -- a s ) (cos ¢s -- o) 

0--~" = .t'(~') a(1 + a 2 ) ( 1  --ocos~O) 2 
on ~" = ae i¢ , 

(A.3) 

where 'V 2' is the Laplacian operator and o = 2a/(1 + a 2) < 1. The last condition in (A.I) is 
automatically satisfied since ~" ~ 1 as Izl ~ oo and ¢~ = 0 on I~'1 = 1. 

The Fourier expansion 

f ( ~ )  __ (1 ~-a ~) ~'z. na"cos(.~), o < ~ < 2.,  (A.4) 
r l=l  

and the method of separation of the variables R and ~b yield the solution 

a2n -1 

¢~ = (1-a~)~.= { ¥ a ~  ( R " - g - " )  cos(n~), a <- R < 1, 0 .< ~ ,< 2,. 
1 (A.5) 

The application of Green's theorem to the radiation potential 6 ( x , y ) o f  Sec. 2, with 0~ = rr/2 
in (2.1), and the Green's function (2.9), in the fluid region, leads to the formula: 

~ ( x " Y l )  = ~lZl_lG ~n (fl) OG ds -- Tll z l =1~n . (A.6) 

It can be shown that the wave-part of the Green's function is given by: 

{ i l x T x ~ l - - ( y +  y l  + 2h)} (A.7) 
G w = -- i exp e " 

The wave-part of the radiation potential q~ (xx, y~) is, therefore, given by: 

~ a6 _j; Sacw 
dPw(Xl,Yl) = i Gw "~n ds (is. (A.8) 

i= ~,j=1 On 

Hence 

O' d s - -~ i z , . $  O- ~ ( e - ' ) d s }  e('X, -~'o '~ 

as xl  ~ + ~ .  (A.9) 
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Comparing (A.9) with (1.4) we see that: 

A =  --ie-'2h/eI{~lz I=le-Wez)~-~dS--~lzl=l'~n(e-'Z-/e)dS}~n (A.10) 

The first of the integrals in (A.10) can be easily evaluated by using condition (2.1)with 01 
7r/2. Hence 

A = in e_C2h/e) + ie_t2h/e) ~ ~ ~ (e -i~/e) ds. (A.I 1) 
e Yl~l=~ On 

If in the limit e ~ 0, ¢o (x, y)  of (A.1) is regarded as a reasonable approximation to ~(x, y), 
then 

i~ $ 0 (e_/~/e) dz A ~ -- e -(2h/e) + e -C2h/e) ¢o - -  as e ~ 0. (A.12) 
e J l z l= l  ~ n  Z 

Our knowledge of ~ of (A.3) and (A.5) makes it easier to evaluate the integral of (A.12) in the 
~'=plane, where ~" is given by (A.2). Thus 

~1 ~ a (e_if/e) dz 0 - -  
ZI= ~nn z 

2e n=l 1 + a  2n ~' l=a +~-n-) e 
d~ 

( ~ - a 2 )  ~" (A.13) 

By expanding the function 

1 F(~') - (~'--a2) 2 exp [ e(~'--a 2) J 

in Laurent series for I~'1 > a 2 we arrive at the result: 

a (e_i~/e) dz 
e~o 7 -  - = 

z [= l  O n  g 

(-- 1)ka ~ /--(1 --a2)a2h+l / i.___n + 2i____n (1 --a2) 2 e ale ~ (1 --a2k+2) 2 exp j 
e e 4=1 [" ~ -1 - -a  ~+2)  (A.14) 

In the limit e --> 0, h ~ oo(a --, 0) such that 1/(eh) -+ 0 (a/e ~ 0), the contribution from the series 



72 

is small compared to (in/e) and therefore (A. 12) and (A. 14) yield the estimate 

2irr 1 
A ~ e -(2h/e) as e ~ 0, h ~ ~ such that - -  ~ 0. (A.15) 

e ~ eh 

This is the same as (2.16) with 01 = 1r/2. The estimate (2.17) can be recovered in the same 
way by let t ing x l  ~ - -  oo in (A.7) and (A.8). 
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